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ABSTRACT
Calcium phosphate (CaP) bioceramics have long been of interest
for the unique properties that they exhibit as bone substitute
materials. By harnessing the unique bone-bonding capacity of
CaP’s, biomaterials scientists have made great strides over the past
2 decades to produce novel materials to assist in the treatments of
defects caused by trauma, disease, or both. In recent years,
however, it has become apparent that the traditional set of
techniques used to produce calcium phosphates does not satisfy
all of the requirements necessary to meet the challenges of
emerging applications. In particular, recent interest in (i) the
synthesis of coprecipitated CaP/bioorganic composites and (ii) the
investigation of the mechanisms of biomineralization has high-
lighted the need for new methods to control pH and CaP mass
yield.

Introduction
Calcium phosphates (CaP’s) have long been the focus of
extensive research for their potential use in biological
systems.1-3 The range of products in which they can be
found includes fertilizers, adsorbents for chromatography,
and drug delivery systems. But by far the most widely
recognized application of calcium phosphates is their use
as bone substitutes, which over the past 3 decades has
yielded a lucrative commercial market currently estimated
in excess of $400 million (U.S.) per year worldwide.

The clinical success of calcium phosphates as ortho-
pedic biomaterials is due in no small part to the unique
capacity that they impart to implants: the ability to
interact with the surrounding bone. The first widespread

application of calcium phosphates (plasma-sprayed CaP
coatings for metallic prostheses4-6) provides a classic
example of this capacity, as the advent of these coatings
imparted to metallic surfaces previously inert to the
human body the ability to bond directly to bone. The past
15 years have witnessed the emergence of a vast number
of other CaP-based products, including dense bone
fillers,7-9 porous implants,10,11 advanced composites,12,13

and bone cements,14,15 all of which aim to exploit this same
unique property.

While the precise mechanisms underlying the bone-
bonding capacity of calcium phosphates are still not fully
understood, it is largely recognized that by controlling
both (i) the precise chemical composition of the CaP
species present and (ii) the mass fraction of each of these
species, one can tailor the manner in which the resultant
biomaterial interacts with its environment. Efforts aimed
at controlling chemical composition have centered on
development of production methods for pure forms of
various calcium phosphates (Table 1), and recent initia-
tives have aimed to produce variants of some of these
CaP’s through the carefully controlled substitution of
secondary ions.16,17 Control of mass fraction, on the other
hand, has traditionally been achieved by mechanical
mixing of the selected phases. Although this approach has
proven highly effective for traditional systems in which
pre-fabricated CaP particles can be dry mixed (either with
synthetic polymers or with other calcium phosphates), it
has proven inadequate to meet the needs of some of the
latest applications.

A major area of recent progress has been the produc-
tion of CaP/bioorganic composites.18-20 Interest in these
materials stems from their compositional similarity to
calcified tissue,21 a biomimetic character of particular
significance to the field of tissue engineering.22,23 Recent
developments have produced complexes with a high
degree of chemical and nanostructural similarity to bone.20

However, a significant deficiency of current synthesis
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Table 1. Ca/P Ratios and Chemical Formulas for
Various Calcium Phosphate Bioceramics

Ca/P ratio compound formula

0.50 monocalcium phosphate
monohydrate (MCMP)

Ca(H2PO4)2‚H2O

0.50 monocalcium phosphate
anhydrous (MCPA)

Ca(H2PO4)2

1.00 brushite (DCPD) CaHPO4‚2H2O
1.00 monetite (DCPA) CaHPO4
1.33 octacalcium phosphate

(OCP)
Ca8(H2PO4)2(PO4)4‚5H2O

1.50 amorphous calcium
phosphate (ACP)

Ca3(PO4)2‚xH2O

1.50 R-tricalcium phosphate
(R-TCP)

R-Ca3(PO4)2

1.50 â-tricalcium phosphate
(â-TCP)

â-Ca3(PO4)2

1.67 hydroxyapatite (HAp) Ca10(PO4)6(OH)2
2.00 tetracalcium phosphate

(TTCP)
Ca4P2O9
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methods is the lack of systematic means through which
the CaP content, and hence the CaP/bioorganic ratio, can
be controlled.

Our group is currently engaged in research pertaining
to all aspects of calcium phosphate biomaterials, from
synthesis to commercialization to clinical application.
Using this broad background as a base, we have developed
a platform technique the applicability of which ranges
from the investigation of biomineralization mechanisms
to the development of novel CaP/bioorganic composites.
Developed for the room-temperature synthesis of calcium
phosphates, this simple technique enables the simulta-
neous control of pH and CaP mass yield without the
addition of titrants. In this Account, we discuss the
development of the technique in the context of the acidic
CaP brushite. Application to the somewhat more complex
system of hydroxyapatite and to specific examples of the
production of CaP/bioorganic composites is left for future
reports.

Synthesis of Novel CaP Biomaterials:
Changing Requirements
The Importance of pH. The effect of pH on the synthesis
of calcium phosphates is integrally linked to the properties
of phosphate-containing solutions. Due to the tripotic
equilibrium that exists within these systems, variations in
pH alter the relative concentrations of the four poly-
morphs of phosphoric acid (Figure 1) and thus both the
chemical composition and the amount of the CaP that
forms by direct precipitation.24 This complex equilibrium
makes the control and prediction of CaP precipitation
infinitely more difficult than, say, that of simple table salt
from a NaOH/HCl solution, because the latter involves
strong monoprotic acids and bases the ionic concentra-
tions of which are vastly easier to predict.

During the formation of CaP/bioorganic complexes, pH
plays a role in determining the properties of both the
inorganic and organic phases. While its influence on the
inorganic phase is largely compositional (chemical com-
position and mass fraction), altered pH induces changes
in the organic phase that are generally structural with
variations in water uptake,25,26 alterations in helical struc-
ture,27 and disruption of long-range order28,29 all resulting
from fluctuations in synthesis-time pH. Furthermore, pH
can affect the solubility of bioorganic species during
synthesis, a property particularly important for distin-
guishing between systems in which calcium phosphates
and bioorganics are coprecipitated20,24 and those in which
the CaP species is merely precipitated onto an insoluble
bioorganic.30,31

Mass Yield. As mentioned previously, traditional meth-
ods for producing CaP biomaterials have involved, almost
exclusively, the prefabrication of monolithic calcium
phosphates of the desired chemical composition, followed
by mixing of the desired amounts of each. It is thus,
perhaps, not surprising that considerations of mass yield
have generally been paid little heed, because these
methods permit excess CaP to be merely discarded.

For the production of CaP/bioorganic composites,
however, these considerations take on a new significance.
The CaP and organic components of these composites are
generally formed simultaneously via a technique known
as coprecipitation. This approach is often responsible for
some of the more distinctive biomimetic features of the
resulting biomaterials, including the nanometer size of
their CaP crystallites and orientational relationships be-
tween their organic and inorganic constituents.20,32 How-
ever, it also dictates that the CaP content of the precipitate
is determined at the time of synthesis with no opportunity
to discard unwanted quantities or add additional ones
without significantly altering the properties of the material.

FIGURE 1. pH variation of ionic concentrations in tripotic equilibrium for phosphoric acid solutions.
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Contaminants. Similar to that of mass yield control,
the issue of contaminant phases containing residual
quantities of titrant species has traditionally not been a
major focus of concern. Methods involving prefabrication
of calcium phosphates all employ filtration and rinsing
of precipitates before inclusion in the final product,
thereby allowing titrant species to be eliminated while still
in their aqueous state.

Efforts to produce porous forms of CaP/bioorganic
composites have resulted in the emergence of freeze-
drying as a preferred technique for producing scaffolds
for tissue engineering.33 Freeze-drying involves the con-
trolled production of a frozen intermediate comprised of
water (in the form of ice), the chosen bioorganic, calcium
phosphate, and all residual reactants, solvents, and titrants
present in the reaction mixture. Subsequent sublimation/
evaporation steps remove most or all of the pure species
(water, residual acids, and aqueous titrants), leaving a
porous body containing only the CaP/bioorganic com-
posite.

Since all titrants are incorporated within the frozen
intermediate, however, titrants can sometimes react with
each other or with reactant ions as freezing progresses,
forming solid contaminant phases that persist in the final
product even after the sublimation/evaporation steps.
These phases can drastically alter the mechanical proper-
ties and solubility of the composite and can also reduce
its ability to interact with the surrounding bone.34

The requirements highlighted above demonstrate that
a technique simultaneously enabling (i) control of mass
yield, (ii) regulation of pH, and (iii) minimization of titrant
additions would be a welcome addition to the literature.
While a number of techniques, including application of
pH stat techniques via an automatic titrator, could be used
to address the first two requirements, the third remains
particularly difficult to satisfy. This situation is further
exacerbated by the fact that risk of sodium contamination
makes the use of NaOH as a titrant undesirable, leaving
the volatile (and generally unpleasant) compound am-
monia as the most common means for pH control. The
simple solution to this problem lies not in the identifica-
tion of novel titrating agents but rather in a reevaluation
of the reactants themselves.

Simplest Is Best
Typically, methods to produce calcium phosphates em-
ploy a single calcium source, most often either calcium
hydroxide35 or calcium nitrate.36 The dissociation products
of these two compounds are drastically different in terms
of their acidity or alkalinity. Calcium nitrate dissociates
in water to a slightly acidic solution with a pH of
approximately 5, whereas calcium hydroxide forms an
equilibrium with deionized water around pH 12.

By using both of these compounds in varying propor-
tions, solutions of controlled acidity/alkalinity can be
produced, increased Ca(OH)2 content leading to higher
pH values and increased Ca(NO3)2‚4H2O content resulting
in lower pH. This simple modification allows the pH of

any calcium-containing solution to be controlled by
effectively using the reactants themselves as titrants. pH
can be varied both by changing the overall ion concentra-
tions and by changing the nitrate-to-hydroxide ratio.
Residual secondary ions are thus limited to the nitrate
anion, which, in the absence of suitable cations, does not
form any solid contaminant phases. This approach thus
limits contaminant phases to species that can be removed
by, for instance, the sublimation step of a freeze-drying
process.

By repeating the synthesis of a given CaP (brushite in
the present case) at various combinations of reactant
concentrations and nitrate/hydroxide ratios, one can
produce a comprehensive map of pH variation at any
given Ca/P ratio (Figure 2). Similarly, a map of mass yield
(per milliliter of reactant solution) can be produced by
weighing the filtered and dried products of synthesis at a
given set of reactant conditions (Figure 3).

A Complex Balance
In searching for a means through which the observed
variations in pH and mass yield can be predicted, con-
trolled, or both, it is instructive to examine the variations
in theoretical supersaturation at each combination of ion
concentration and nitrate/hydroxide ratio observed.

FIGURE 2. Map of pH variation for brushite synthesis (Ca/P ) 1.00).

FIGURE 3. Map of variation in mass yield for brushite synthesis
(Ca/P ) 1.00).
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In the idealized case of a solution of which the ionic
species are limited to the four polymorphs of phosphoric
acid plus calcium (Ca2+), it would be expected that the
amount of brushite precipitated (i.e., mass yield) would
be governed by the supersaturation coefficient. As can be
seen from Figure 4, however, altering the nitrate/hy-
droxide ratio leads to behavior that decidedly does not
conform to this ideal case.

The complex systematic variations in the relationship
between mass yield and supersaturation shown in Figure
4 are most likely due to the effects of nitrate ions (NO3

-)
on the activities of the other ionic species present. While
further investigation of this effect coupled with math-
ematical modeling techniques may provide a means
through which the variations shown in Figures 2 and 3
can be quantified, use of the figures themselves allows us
to forego such complex approaches to produce a powerful
method for the control of both mass yield and pH.

Application: Titrant-Free Control of Synthesis
Parameters
While the pH and mass yield maps shown in Figures 2
and 3 constitute useful tools in their own right, it is from
their combined use that a technique to provide simulta-
neous control of pH and yield without the need for titrants
emerges.

Control of Mass Yield at Constant pH. By identifying
contours of constant pH on the map in Figure 2, one can
identify the set of concentration-nitrate/hydroxide ratio
combinations for which pH remains at a given level
(Figure 5a). Because the axes for the mass yield map
(Figure 3) are identical to those on the pH map, the trace
of this contour can be transposed directly from one to
the other (Figure 5b).

Selecting points of intersection between the transposed
trace and the constant-mass contours subsequently allows
the identification of constitutive relationships for both ion
concentration and nitrate/hydroxide ratio (Figure 5b); use

of these relationships enables the control of mass yield
in a systematic manner, while maintaining pH at a
constant level.

Control of pH at Constant Mass Yield. Applying the
same approach in reverse order (Figure 6) allows the
transposition of constant-mass contours on the yield map
onto the pH map, thereby permitting the control of pH
at constant mass yield.

FIGURE 4. Variation of mass yield with supersaturation for various
combinations of concentration and Ca(NO3)2‚4H2O/Ca(OH)2 ratio.

FIGURE 5. Application of pH and mass yield maps for titrant-free
control of mass yield at constant pH.

FIGURE 6. Application of pH and mass yield maps for titrant-free
control of pH at constant mass yield.
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Further Implications. The constitutive relationships
produced using these two techniques (Figure 7) are simple
and can be executed with laboratory compounds that are
both inexpensive (bearing in mind the minimum $5000
(U.S.) price tag for a pH-stat autotitrator) and readily
available. Furthermore, by varying the solution ratio of
calcium to phosphorus and the temperature at which
synthesis is carried out, one can achieve additional
degrees of control. Higher calcium to phosphorus ratios,
for instance, enable the extension of this technique (with
some modification) to the synthesis of apatite, while
elevated temperature allows the precipitation of monetite
to be addressed. Efforts currently underway are focusing
on the synthesis of amorphous calcium phosphate, a
species for which reproducible synthesis methods are
elusive at best.

Perhaps the most powerful potential applications of the
techniques described here involve the precipitation of
calcium phosphates onto bioorganics. Conventional means
of controlling pH, using buffers or titrants, introduce
additional contaminant ions into the reactant system that
may alter both CaP precipitation behavior and the con-
formational structure of the bioorganic. In some cases,
the presence of titrants can result in the precipitation of
phases containing contaminant ions, and in extreme

cases, such as when freeze-drying is involved, these
contaminant phases can even prevent formation of the
desired CaP species (Figure 8). As mentioned previously,
the issue of controlling the CaP/bioorganic ratio has been
largely ignored to date, most likely due to the lack of a
viable means through which it can be addressed. Simple
application of the platform technique described here has
facilitated the development of a method for producing
composition-controlled CaP/bioorgnanic composites the
inorganic-to-organic ratio of which can be altered with
degrees of accuracy foreign to techniques reported to date.
Details of this and other studies will be reported in our
future publications.
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